309 research outputs found

    First demonstration of a Compton gamma imager based on silicon photomultipliers

    Full text link
    We are developing a rugged and person-transportable Compton gamma imager for use in security investigations of radioactive materials, and for radiological incident remediation. The imager is composed of layers of scintillator with light collection for the forward layers provided by silicon photomultipliers and for the rear layer by photomultiplier tubes. As a first step, we have developed a 1/5th-scale demonstration unit of the final imager. We present the imaging performance of this demonstration unit for Cs-137 at angles of up to 30 degrees off-axis. Results are also presented for Sn-113 and Na-22. This represents the first demonstration of the use of silicon photomultipliers as an embedded component for light collection in a Compton gamma imager.Comment: 19 pages, 6 figure

    Acousto-optically induced unidirectional and single frequency operation of a Nd:glass ring laser using the acousto-optic effect in the laser medium

    No full text
    A traveling-wave acousto-optic modulator fabricated from Nd-doped phosphate glass is used both as the laser gain medium and as the unidirectional element in a diode-pumped ring laser. Unidirectional operation can be maintained with applied rf powers as low as 6.7 mW and results in cw single-frequency output powers as high as 200 mW for a pump power of 1.2

    OSETI with STACEE: A Search for Nanosecond Optical Transients from Nearby Stars

    Full text link
    We have used the STACEE high-energy gamma-ray detector to look for fast blue-green laser pulses from the vicinity of 187 stars. The STACEE detector offers unprecedented light-collecting capability for the detection of nanosecond pulses from such lasers. We estimate STACEE's sensitivity to be approximately 10 photons per square meter at a wavelength of 420 nm. The stars have been chosen because their characteristics are such that they may harbor habitable planets and they are relatively close to Earth. Each star was observed for 10 minutes and we found no evidence for laser pulses in any of the data sets.Comment: 38 pages, 12 figures. Accepted for publication in Astrobiolog

    Detection of Atmospheric Cherenkov Radiation Using Solar Heliostat Mirrors

    Full text link
    The gamma-ray energy region between 20 and 250 GeV is largely unexplored. Ground-based atmospheric Cherenkov detectors offer a possible way to explore this region, but large Cherenkov photon collection areas are needed to achieve low energy thresholds. This paper discusses the development of a Cherenkov detector using the heliostat mirrors of a solar power plant as the primary collector. As part of this development, we built a prototype detector consisting of four heliostat mirrors and used it to record atmospheric Cherenkov radiation produced in extensive air showers created by cosmic ray particles.Comment: 16 latex pages, 8 postscript figures, uses psfig.sty, to be published in Astroparticle Physic

    The STACEE-32 Ground Based Gamma-ray Detector

    Full text link
    We describe the design and performance of the Solar Tower Atmospheric Cherenkov Effect Experiment detector in its initial configuration (STACEE-32). STACEE is a new ground-based gamma ray detector using the atmospheric Cherenkov technique. In STACEE, the heliostats of a solar energy research array are used to collect and focus the Cherenkov photons produced in gamma-ray induced air showers. The large Cherenkov photon collection area of STACEE results in a gamma-ray energy threshold below that of previous detectors.Comment: 45 pages, 25 figures, Accepted for publication in Nuclear Instruments and Methods

    Very high energy observations of the BL Lac objects 3C 66A and OJ 287

    Full text link
    Using the Solar Tower Atmospheric Cherenkov Effect Experiment (STACEE), we have observed the BL Lac objects 3C 66A and OJ 287. These are members of the class of low-frequency-peaked BL Lac objects (LBLs) and are two of the three LBLs predicted by Costamante and Ghisellini to be potential sources of very high energy (>100 GeV) gamma-ray emission. The third candidate, BL Lacertae, has recently been detected by the MAGIC collaboration. Our observations have not produced detections; we calculate a 99% CL upper limit of flux from 3C 66A of 0.15 Crab flux units and from OJ 287 our limit is 0.52 Crab. These limits assume a Crab-like energy spectrum with an effective energy threshold of 185 GeV.Comment: 24 pages, 15 figures, Accepted for publication in Astroparticle Physic

    A simple technique to achieve active cavity-length stabilisation in a synchronously pumped optical parametric oscillator

    No full text
    The dependence of oscillation wavelength on cavity length in a synchronously pumped optical parametric oscillator provides the basis of a scheme for stabilisation of the cavity length and wavelength. The design and performance of a simple implementation of this scheme via the use of a position-sensitive detector is reported for a lithium triborate optical parametric oscillator. The stabilisation scheme has proved effective over the entire tuning range of the oscillator (0.65 - 2.65µm), giving stability against fluctuations up to 200 Hz, with greatly improved amplitude stability, and allowing smooth wavelength tuning over a signal range of ~5nm

    Efimov Trimers near the Zero-crossing of a Feshbach Resonance

    Full text link
    Near a Feshbach resonance, the two-body scattering length can assume any value. When it approaches zero, the next-order term given by the effective range is known to diverge. We consider the question of whether this divergence (and the vanishing of the scattering length) is accompanied by an anomalous solution of the three-boson Schr\"odinger equation similar to the one found at infinite scattering length by Efimov. Within a simple zero-range model, we find no such solutions, and conclude that higher-order terms do not support Efimov physics.Comment: 8 pages, no figures, final versio

    Spin-Charge Separation in the tJt-J Model: Magnetic and Transport Anomalies

    Full text link
    A real spin-charge separation scheme is found based on a saddle-point state of the tJt-J model. In the one-dimensional (1D) case, such a saddle-point reproduces the correct asymptotic correlations at the strong-coupling fixed-point of the model. In the two-dimensional (2D) case, the transverse gauge field confining spinon and holon is shown to be gapped at {\em finite doping} so that a spin-charge deconfinement is obtained for its first time in 2D. The gap in the gauge fluctuation disappears at half-filling limit, where a long-range antiferromagnetic order is recovered at zero temperature and spinons become confined. The most interesting features of spin dynamics and transport are exhibited at finite doping where exotic {\em residual} couplings between spin and charge degrees of freedom lead to systematic anomalies with regard to a Fermi-liquid system. In spin dynamics, a commensurate antiferromagnetic fluctuation with a small, doping-dependent energy scale is found, which is characterized in momentum space by a Gaussian peak at (π/a\pi/a, π/a \pi/a) with a doping-dependent width (δ\propto \sqrt{\delta}, δ\delta is the doping concentration). This commensurate magnetic fluctuation contributes a non-Korringa behavior for the NMR spin-lattice relaxation rate. There also exits a characteristic temperature scale below which a pseudogap behavior appears in the spin dynamics. Furthermore, an incommensurate magnetic fluctuation is also obtained at a {\em finite} energy regime. In transport, a strong short-range phase interference leads to an effective holon Lagrangian which can give rise to a series of interesting phenomena including linear-TT resistivity and T2T^2 Hall-angle. We discuss the striking similarities of these theoretical features with those found in the high-TcT_c cuprates and give aComment: 70 pages, RevTex, hard copies of 7 figures available upon request; minor revisions in the text and references have been made; To be published in July 1 issue of Phys. Rev. B52, (1995
    corecore